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Content

= A new methodology to design primary structure in a way that is consistent with
IACS Polar Class Rules and aligns with service experience from existing vessel
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Introduction / background
m Polar Class design load is derived from glancing impact scenario

® Shell plate and frames dimensioned to onset of plastic hinge formation with rule formulas
¢ Exceeding yield stress is allowed for plate and frames, as long as permanent deformation is small

® Primary structures are designed with direct calculation - in practice finite element analysis, either
linear or non-linear
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Linear FE analysis
® Currently used by practically everybody
¢ Well established methodology
= Limit state yield of the material
¢ Maximum allowed shear stress 74, = g,,/V3
¢ Maximum von Mises stress in member flanges 1.15 ¢,

» Gives some allowance for local stress
concentrations

® Secondary structure is designed to plastic limit
state while primary is designed to elastic limit state
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The issues with linear analysis

® Linear analysis gives insight only into what
happens before yield

= No info beyond yield — no idea of: T
¢ Amount of margin s
¢ Failure mechanism P R

® Primary structure of many old successful &
designs would not pass linear analysis P

¢ No damage observed, even over long service
history on harsh Arctic conditions

+ Effect of different limit states?
¢ Effect of pressure-area curve?

+ Rarity of impacts with ice features large enough to
cause high forces?

¢ Some other reason?
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Benefit of moving to non-linear analysis
® Linear analysis = Non-linear analysis
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Benefit of moving to non-linear analysis

® Linear analysis
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Benefit of moving to non-linear analysis and importance of model extent

= |f model extent is limited to double side, capacity of supporting
structures is not checked

m |inear analysis only tells if the deck buckles elastically or not

= Nonlinear analysis tells is buckling elastic or plastic, how it
progresses and how the load is shared in structure

= Example, PC 2 vessel designed with linear analysis and model
limited to double side, large permanent buckling under design load
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IACS PC Rules — nonlinear analysis

12.17.6 If the structure is evaluated based on non-linear calculation methods, the following
are to be considered:

(1) The analysis is to reliably capture buckling and plastic deformation of the structure

(2) The acceptance criteria are to ensure a suitable margin against fracture and major
buckling and yielding causing significant loss of stiffness

(3) Permanent lateral and out-of plane deformation of considered member are to be minor
relative fo the relevant structural dimensions

(4) Detailed acceptance criteria to be decided by the Classification Society

= \Very good goals, but how to do this in practice?

Aker Arctic

Slide 10



Hull design in IACS PC Rules — nonlinear analysis
= No unified acceptance criteria from IACS or Classification Socities

— How to design in practice?

Pearson, Hindley & Crocker
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Hull design in IACS PC Rules — nonlinear analysis
= No unified acceptance criteria from IACS or Classification Socities

— How to design in practice?

RS Rules: tangent intersection method

Criteria: Py > Pgesign
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Examples of load-displacement curve

®= Methods based on shape of load-displacement curve work very nicely for this kind of ideal curve:
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Examples of load-displacement curve

= However, if the load-displacement curve differs from the ideal one, some issues arise:
¢ Same elastic capacity, different plastic capacity
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Examples of load-displacement curve

= However, if the load-displacement curve differs from the ideal one, some issues arise:
¢ What to do with these?

Load

Load

Displacement

Displacement

Aker Arctic

The Ice Technology Partner

Slide 15



Acceptance criteria

m Clearly, a better acceptance criteria is needed
¢ Should not be based on shape of load-displacement curve
¢ Plastic hinge would be ideal, but hard to determine reliably from FE model — not practical

® Good acceptance criteria should have following qualities:

¢ Robust
Will fail structures that are too weak
Will rate stronger structure as stronger
Small variations in modeling practice, meshing, etc. should not result in large variation of result
¢ Simple to apply
Preferably as little need for judgement as possible, i.e. clear pass / fail
Everyone will do the analysis the same way — simple approval process
¢ Ensure that IACS criteria are met
Permanent deflections to be minor compared to structural member dimensions
Margin against fracture, major buckling and loss of stiffness
¢ Ensure proper strength hierarchy, i.e. plate and frames fail before primaries

Aker Arctic
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Example

® Typical polar vessel
¢ A 25000t
¢ Labt.175m
¢ B24m
¢ T85m

= Double side, width 1.6 m
® Transverse framing

= Frame spacing 400 mm, stringer spacing 1500 mm, webframe spacing 2400 mm, longitudinal
spacing 800 mm

Material HT-36
Midbody of three ice classes studied, PC 2, PC 4 and PC 6

Aker Arctic
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Example — structural arrangement

Midship section, PC 4
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Example — FE model
= Non-linear analysis requires relatively fine mesh and careful modeling to ensure accuracy
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Example — Frame (PC 4)

F =100 % of design load
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Example — Frame (PC 4)

Crrame = F(8p; = 0.003 1) = 1.29 Fyesign

F =129 % of design load
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Example — Frame (PC 4)
Crrame = F(8p; = 0.003 1) = 1.29 Fyesign

For PC 4, CF,=1.15

Corimary = Fiimie = 1.15+1.29 = 1.48 F = 148 % of design load
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Example — Stringer (PC 4)

Flimit = 148

F =100 % of design load
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Example — Stringer (PC 4)

Flimit = 148

F =129 % of design load
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Example — Stringer (PC 4)

Flimit = 148

F =148 % of design load
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Example — Stringer (PC 4)

Flimit = 148
Cprimary = 152

Cprimary = F limit —> OK
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Example — Webframe (PC 4)

Flimit = 148

F =100 % of design load
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Example — Webframe (PC 4)

Flimit = 148

F =129 % of design load
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Webframe (PC 4)

Example
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Webframe (PC 4)
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Example - Results
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Conclusions

m Aker Arctic acceptance criteria provides straightforward and robust way to make
non-linear analysis of primary structures for Polar Class vessels

= Will be published this summer
= \Will be discussed with Classification Societies
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Conclusions

= Non-linear analysis of primary structures provides a way to improve structural
design of Polar Class vessels
¢ Increased safety

= Better insight into behavior of the structure, actual margins and failure modes
= Structures supporting the primaries taken into account

¢ Reduced weight
= Especially for high ice classes

¢ Scantlings from non-linear analysis align much better with old successful designs
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Copyright

Copyright of all published material including photographs, drawings and images in
this document remains vested in Aker Arctic Technology Inc and third party
contributors as appropriate. Accordingly, neither the whole nor any part of this
document shall be reproduced in any form nor used in any manner without express
prior written permission and applicable acknowledgements. No trademark,
copyright or other notice shall be altered or removed from any reproduction.
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