

Application of membrane tanks in Arctic conditions

Arctic Passion seminar 2020

Aker Arctic, Helsinki, March 2020

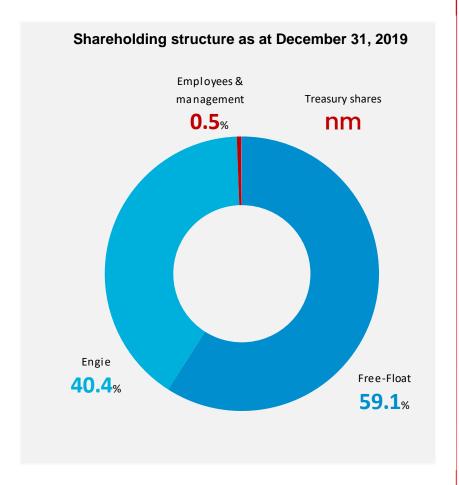
Safety Excellence Innovation Teamwork Transparency

1

Company overview

GTT at a glance

A French technology and engineering company with more than 50 years of experience in the design of the Membrane Cargo Containment Systems.


Expert in liquefied gas containment systems

GTT is a public company listed on the Euronext Stock Exchange (Paris)

456 highly qualified people(1), present worldwide

(1) As at December 31, 2019, at Group level. nm: not meaningful

Core Business as at December 31, 2019 A strong order book

FY 2019 movements

66 new orders

57 LNGC

6 VLEC

3 GBS

30 deliveries

27 LNGC

3 FSRU

Order book of 133 units

113 LNGC

6 VLEC

6 FSRU

2 FLNG

6 Onshore storage / GBS

Notes: LNGC – Liquefied Natural Gas Carrier, VLEC – Very Large Ethane Carrier, FSRU – Floating Storage and Regasification Unit, FLNG – Floating Liquefied Natural Gas , GBS – Gravity Based Structure

GTT - New Business (LNG as Fuel)

Order book of 19 units

FY 2019 movements

- **14** ULCS (Ultra Large Container Ships)
 - 1 Container vessel (converted to LNG)
 - 1 Cruise ship
 - 3 LNG bunker ships

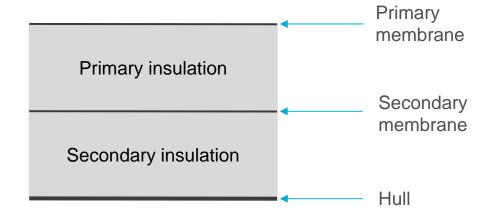
8 new orders

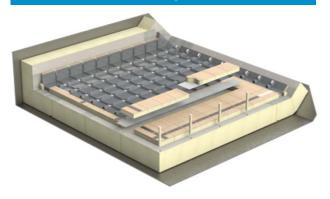
2 LNG Bunker ship

1 Container vessel

5 ULCS

2


GTT Membrane Containment System


GTT membrane technologies

General principle:

- Two membranes
- Two layers of insulations
- Containment system anchored to the inner hull

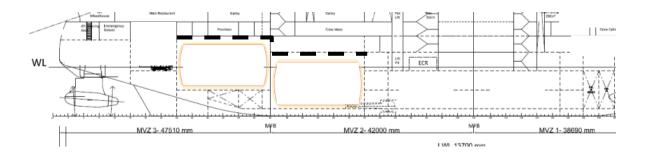
Mark III system

NO96 system

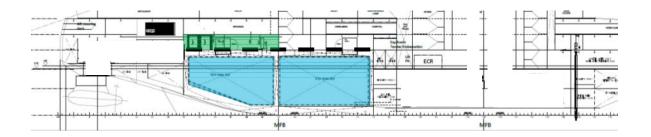
3

First electric hybrid cruise ice-breaker

Cruise ice-breaker « Le commandant Charcot » for Ponant



- Built by VARD
- 270 passengers& 180 crew
- Polar destination trip up to 4 weeks
- 30,000 GT,150m long,28m wide,15 knots
- Class BV, PC2

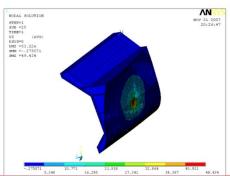


Saving space for autonomy and cabins

2 type-C bilobe tanks 2,900 m³

2 membrane tanks 4,500 m³ 1 deck saved

4

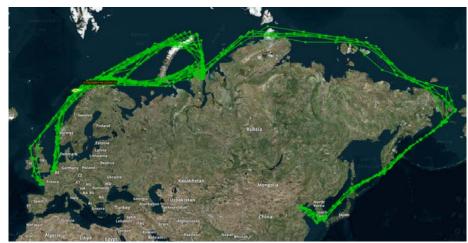

Validation of GTT technologies for use in Actric conditions

Ice navigation related studies

- GTT / Aker Arctic, 2007-2008
 - Design of a double acting membrane type LNG carrier for Arctic operation
- GTT / Krylov Shipbuilding Research Institute, 2007
 - Evaluation of deflections and strains in the inner side plating for side grillages of a membrane LNG carrier under emergency loads
- GTT / DSME / DNV, 2006-2008
 - Study & development of a 170 k LNGC Ice Class 1A
- GTT / SHI / ABS, 2006-2008
 - Study & development Project of a 208 k LNGC Ice Class 1A
- GTT / BV, 2008
 - Study of the winterization requirement for LNG carrier

Validation for ARC7 navigation conditions

- GTT's membrane systems (MARK III, MARK III Flex, NO96 GW & NO96 L03+) were validated to withstand the 40 years of navigation in arctic conditions.
 - ARC7/PC3 classification
- Cooperation program with:



AiP:

15 LNG Carriers had been build for Yamal Project

Route of the « Vladimir Rusanov » ARC7 LNGC

Studies performed to validate CCS for ARC7/PC3

Sloshing

- GTT methodogy
- Sloshing for arctic application

Vibration

- Methodology
- Experimental tests

Collision

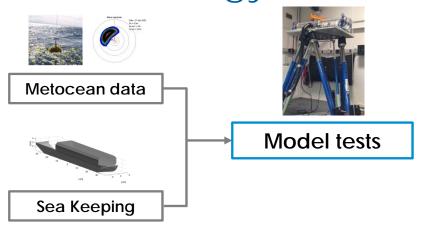
- Return of Experience
- Collision test


Sloshing

Sloshing key factors

Sloshing loads depends on

Ship design


- Sloshing risk depends on
 - The time spent under each condition (ship profile & sea state)

Risk

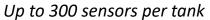
= f (condition, time

Methodology Overview - Model tests

- 6 d.o.f motions are driven by 6 high precision actuators
- Controlled by 6 independant measurement system

Instrumentation

Up to 300 sensors per tank to catch the Sloshing impacts

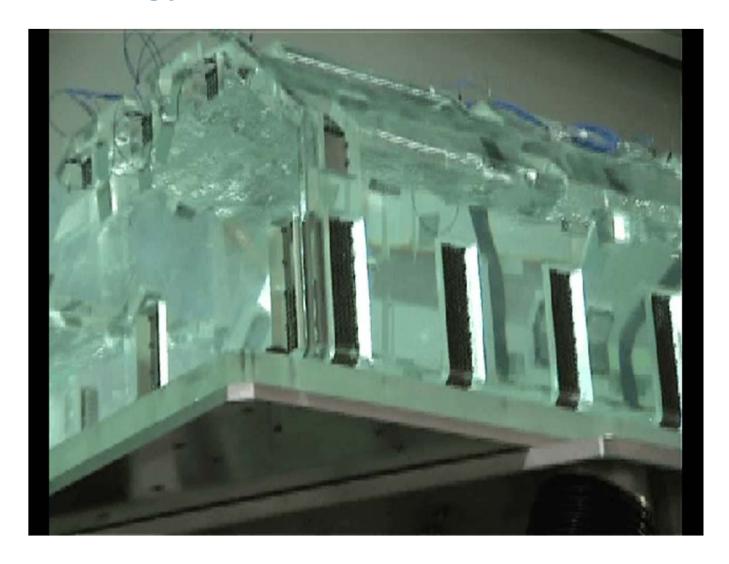

Scale

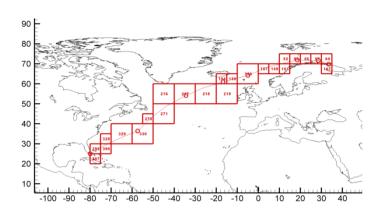
1/10 to 1/80 can be tested

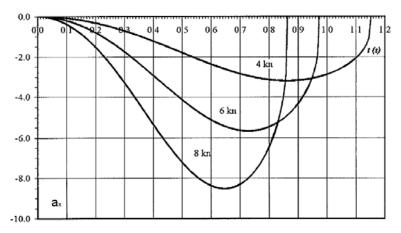
Density Ratio

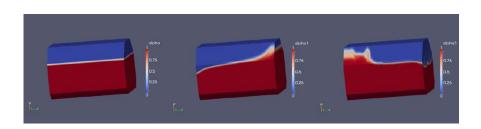
Same Density ratio at full and model scale

$$\left(\frac{\text{Natural gas}}{\text{LNG}}\right)_{\text{cold}} = \left(\frac{\text{SF}_6 + \text{N}_2}{\text{Water}}\right)_{\text{ambient}}$$




Methodology Overview - Model tests


Sloshing for Arctic

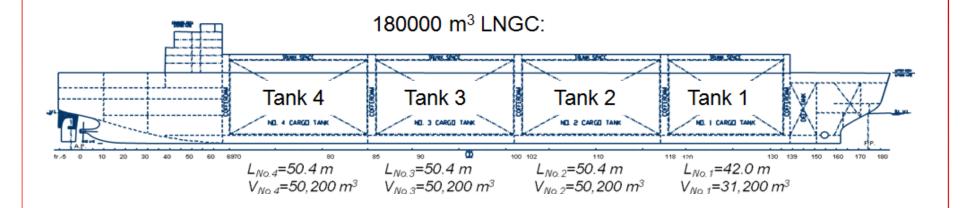

- Ship features impacting sloshing
 - No bilge keels preventing from rolling
 - Arctic bow (no bulbous bow)

Ship's operational profile
Sea route from Barents Sea to Gulf of Mexico
through North Atlantic and Europe

- Fast deceleration
 - Impact with thicker ice

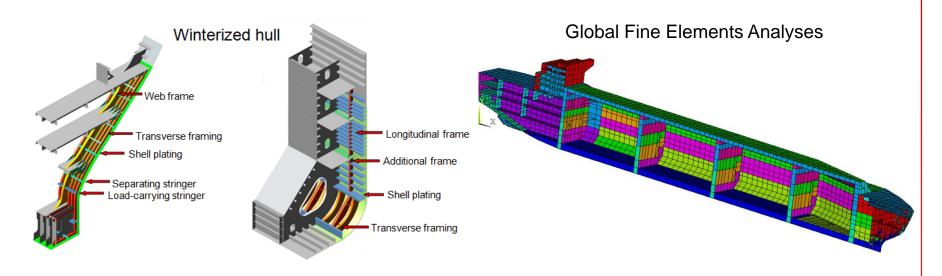
Tested acceleration profile

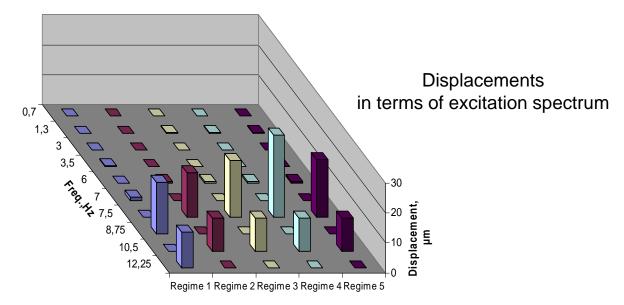
GTT


19

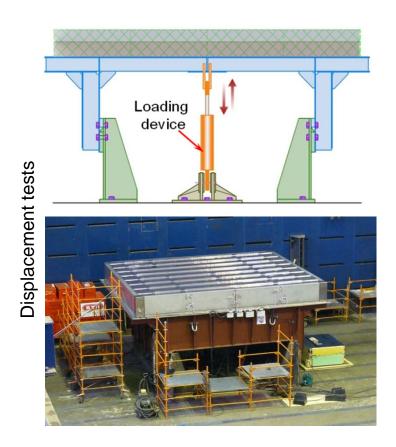
Vibration

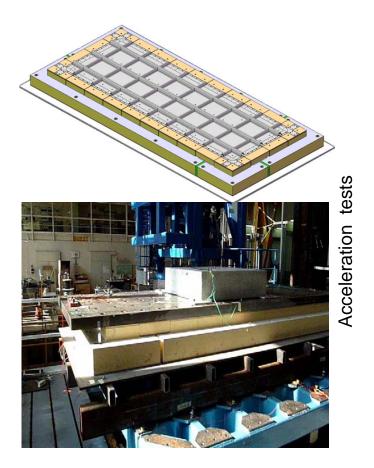
Ship and operationnal profile




	Regime	Ice operation type	Ice thickness (m)	Operational speed (knots)	% duration (*)
ARC7	1	Independent	0.2	15.5	34,08%
	2	Independent	0.6	10.5	42,60%
	3	Independent	1.0	5.5	8,52%
	4	After one icebreaker	1.5	5.0	14,77%
	5	Impact against thick ice	5.0	8.2	0,03%

(*) of the time spent in ice conditions


Hull and vibration spectrum



Model testing

Membrane CCS are suitable to sustain vibration loads due to Arctic environment.

Collision

Collision

« Maemi » Typhoon on Korean shipyards

Over pressurizing of membrane during tests

Grounding of « El Paso Paul Kayser » near Gibralatar

Experiences on accidental loads on GTT's CCS

Collision - Large scale testing

GTT's membranes can absorb very high level of deflection before rupture compared to the inner hull steel.

8

Other example of GTT system application in Arctic conditions

ARCTIC LNG 2 Project: GBS innovative concept

Salmanokskoe (Ultrenee) OGCF LNG Plant (Gydan Peninsula)

3 stages 5.5 mtpa each Implementation:

• 1st stage: 2022

2nd stage: 2024

• 3rd stage: 2025

3 GBS (Gravity Based Structure)

Concrete caissons

Built in a dry dock Novatek

Murmansk LNG construction center

Footprint: 324 m x 125 m x 30 m

2 LNG tanks volume: 219 000 m3

GTT GST® technology

Conclusions

Conclusions

- GTT containement systems (MARK III, MARK III Flex, NO96 GW & NO96 L03+) are suitable for Arctic navigation in Arc7/PC3 conditions
- Proved on 15 Yamal LNGC
- Cruise ice-breaker for Ponant and GBS for Arctic LNG-2 Project are under way
- GTT continue to work on the further validation of containement systems for LNGC in extended ice-going conditions and LNG fueled ice-breakers for Arctic LNG-2 Project.

Thank you for your attention

Renato BOLOGNESE – rbolognese@gtt.fr

Image courtesy of STX, Engie, Excelerate, SCF Group, Shell, CMA CGM, Matthieu Pesquet, Conrad

