

NORTH CASPIAN SEA PROJECT

ONE OF THE LARGEST AND MOST COMPLEX PROJECTS IN THE WORLD

North Caspian Operating Company N.V. (NCOC) acts as Operator on behalf of the Consortium of seven oil&gas companies: KazMunayGas, Eni, Shell, ExxonMobil, TotalEnergies, CNPC and INPEX.

Each shareholder is individually responsible for transportation and sales of its share of production according to NCSPSA.

KASHAGAN DEVELOPMENT: THE CHALLENGE IS ACCEPTED

NORTH CASPIAN PROJECT MILESTONES

PRODUCTION SINCE 2016

CUMULATIVE 2022 YTD since Sep 2016 (as of December 31, 2022)

80.7 million tons

12.7 million tons

48.4 billion sm³

7,878.3 billion sm³

SULFUR

OIL EXPORT

7,618 thousand tons

984 thousand tons

LOCAL CONTENT IN PROCURED GOODS, WORKS & SERVICES

2022 \$748 / 59.4 MILLION US\$ %

OFFSHORE SUPPLY CHAIN

MARINE ROUTES

Marine transportation Routes

TSB: Transition Storage Base (buffer) CTB: Caspian Transshipment Base OPF: Onshore Processing Facilities

MAC: Marine Access Channels RIWS: Russian Inland Water Way System Indicative values

ACV

2nd SEP (Cargo Access)

3 Living Quarters Barges NUR. SHAPAGAT & KARLYGASH

TR Barge ZEROCK

Temporary Utility Barge

64 owned units + 16 contracted = 80 marine units

8 Ballastable Barges 5 LASHIN, 2 AKKU, Valentina

12 IBEEVS & 7 PONTOONS

6 Ice Protection Structures

2 USDT Coastal Discovery and **Caspian Fauna**

OSR - 14 Boats & 14 Barges

3 Ice Classed Flat Top Barges COM6, TOP12, TOP14

ACB Argymak

1 x Ice Classed Liquid Bulk Barge COM7

Veritas Pearl SEP (diving inspection)

3 Ice Breaking Vessels MANGYSTAU 3.4.5

2 Marine Survey Vessels Coastal Bigfoot & K.Balzhanov

IBSSV TULPAR

MARINE FLEET

NCO

DRAUGHT REQUIREMENT

Technical limit reach for icebreaking tug: 1.5m

+ Under keel clearance (= Ice thickness)

FALLING & FLUCTUATING CASPIAN SEA LEVELS

Annual Mean Level Relative to Caspian Datum, [m]			
Year	NE Caspian	KE	
2004	0.98	0.98	
2005	1.05	0.99	
2006	0.97	0.92	
2007	0.94	0.92	
2008	0.81	0.75	
2009	0.75	0.71	
2010	0.67	0.63	
2011	0.47	0.43	
2012	0.44	0.36	
2013	0.43	0.44	
2014	0.24	0.21	
2015	0.04	0.03	
2016	0.04	0.01	
2017	0.04	0	
2018	-0.06	-0.13	
2019	-0.20	-0.23	
2020	-0.23	-0.27	
2021	-0.47	-0.5	
2022	-0.73	-0.74	

Caspian Sea level from 1840 to 2022

FALLIN NCOC CASPIA

FALLING/FLUCTUATING CASPIAN SEA LEVELS (CSL)

There are three primary drivers are responsible for changes in Caspian Sea Level:

- 1. Seasonal variations (varies month by month);
- 2. Surges (wind induced surges varies by hour and day);
- 3. Long Term Trend (varies year by year). The Mean Sea level has decreased by 1.78 m since 2005 <u>Falling</u> CSL.

Consequences on the offshore supply chain?

- 1. Vessel downtime due to low water events along the transportation route leading ultimately to supply chain interruption.
- 2. Inability to deliver Roll-On/Roll-Off cargo when water level is too low against capability of Caspian ballastable barges.
- 3. Risked volumes, incremental OPEX, additional CAPEX

The new 2022 study is based on Global Climate Models and following changes:

- Updated Greenhouse gas CO2 emission scenarios in CMIP6 called 'Shared Socioeconomic Pathways' SSP 2-4.5 and SSP 5-8.5
- Selection of CMIP6 climate models based on SSP's and Model resolution over catchment area only 100 km used
- · Bias corrected direct precipitation, land precipitation over catchment area, sea surface evaporation
- Updated river run-off data for Volga, Ural, Kura and other River discharges
- Update of Kara-Bogaz Gol outflow predictions
- Human water extraction increased from 25 km3/year to 28 km3/year.

N C OPI	IRTH CASPIAN ERATING COMPANY		
Year	10%	25%	50%
2022	-0.7	-0.7	-0.7
2023	-1.06	-0.93	-0.78
2024	-1.21	-1.03	-0.83
2025	-1.36	-1.14	-0.89
2026	-1.51	-1.25	-0.95
2027	-1.66	-1.35	-1.01
2028	-1.8	-1.46	-1.08
2029	-1.95	-1.56	-1.14
2030	-2.09	-1.67	-1.21
2031	-2.23	-1.78	-1.27
2032	-2.36	-1.88	-1.34
2033	-2.5	-1.98	-1.41
2034	-2.63	-2.09	-1.48
2035	-2.76	-2.19	-1.55
2036	-2.89	-2.29	-1.62
2037	-3.02	-2.39	-1.69
2038	-3.15	-2.49	-1.77
2039	-3.27	-2.59	-1.84
2040	-3.39	-2.69	-1.91
2045	-4.01	-3.19	-2.28
2050	-4.64	-3.7	-2.65
2055	-5.33	-4.25	-3.05
2060	-6.15	-4.89	-3.5
2065	-7.16	-5.68	-4.02
2070	-8.46	-6.67	-4.67
2075	-10.14	-7.94	-5.49

2022 LONG-TERM MODEL

New forecast 2022 results are lower, e.g.:

- P50: 0.55m lower than 2017 P50
- P25: 0.4m lower than 2017 P25

Probabilistic curve P25 is our Basis of Design (BoD)

Predicted rate of decline (2023-2050):

- P25 scenario: 10 cm
- P50 scenario: 7 cm

NE Caspian Ice Extend 2022-2023 winter

NE Caspian Ice Season durations

KE Observed Ice Thickness

	Kashagan East		
Year	Level Ice, cm	Rafted Ice, cm	
1999/2000	20	30-40	
2000/2001			
2001/2002	40		
2002/2003	50		
2003/2004	30		
2004/2005	50		
2005/2006	55	120	
2006/2007	25	60	
2007/2008	65	80	
2008/2009	50	100	
2009/2010	60	70	
2010/2011	35	55	
2011/2012	65	78	
2012/2013	53	80	
2013/2014	57	84	
2014/2015	50	87	
2015/2016	25	40	
2016/2017	50	60	
2017/2018	50	60	
2018/2019	26	60	
2019/2020	15	25	
2020/2021	43	50	
2021/2022	28	35	
Average	43	66	

Data Sources and Ice Monitoring:

- Satellites images (Radarsat-2, TerraSARX, Sentinel-1 and 2, MODISA, LandSat, etc.)
- □ Helicopter Reconnaissance
- Instrumentation
 - Drift Buoys
 - Ice temperature profilers
 - > UAV
 - Ice thickness profilers from vessel
- □ Standby vessels in KE
 - Direct observations during routine operations
 - Specific measurements when required

USDIB Tug & Barge Project

• Setting the Basis of design

• Designing Tug and Barge

2

3

5

- Model testing of tug alone, tug and barge combination
- Endurance study to confirm operability during severe winter
- Under Keel Clearance study
- Towing system study
- Final selection of ship functions

Service # Towing/pushing USD IB barges in open and closed water 1 2 *Ice breaking duties* + *Leading convoys* 3 *Ice management Open water tows (living quarter barges, heavy cargo barge...)* 4 5 Supply chain for well interventions Platform for stern mounted ice excavator 6 7 Zero discharge vessel 8 Certified to tow Dangerous Goods in towed barge Take part in Oil Spill and fire response plans 9

MODEL TESTS = 5 WEEKS

Purpose:

- Full scale tug's ice-going performance and steering capability.
- Full scale tug and barge's convoy performance and steering capability under different towing arrangements.
- Effect of **under keel clearance** (UKC) on tug and barge's performance in ice.

Results:

- UKC:
 - Theoretical performance predictions methods shows that ice breakers are not able to operate in conditions where ice thickness > UKC but Mangystau Ops data proves the opposite.
 - Analysis of Mangystau Ops data combined with ice model test analysis shows that USDIB Tug can operate in conditions where ice thickness is equal/less to under keel clearance.
- Towing Study:
 - Modifications to original design to comply with Industry standards and best practices weight increase – Compatibility with existing NCOC Marine ops and vessels is confirmed.
- Endurance:
 - Calculated fuel load (without margins) varies between 15.8t (tug pushing barge, summer) to 49.1t (tug pulling barge, extreme ice conditions).
 - When tug is towing barge a convoy mode of operation with lead icebreaker is needed if ice thickness is more than 45cm or the towing tug will need more fuel load and draught will increase to more than 1.56 m.

Design Driver

The main driver is to break the 60 cm thickness, 500kPa flexural strength level ice (same as current Mangystau tugs) but with a lower operational draught.

Tug Main Particulars	GA
Length overall	50.2 m
Breadth	13.0 m
Draught, design	1.56 m
Draught, maximum	2.0 m
Bollard Pull	17 t
Deadweight @ 2.0m draught	296.4 t
Deadweight @1.5m draught	43.2 t

Barge Main Particulars	GA
Length overall	71.5 m
Breadth	14.5 m
Draught, design	1.5 m
Draught, maximum	2.0 m
Cargo deadweight @ 1.5m draught	ТВС
Cargo deadweight @ 2.0m draught	ТВС

Tug Design is based on Lloyd's Register Class with the following notations: ¥100A1, Tug, Caspian Sea Service, Icebreaker(+), Ice Class 1A FS, *IWS, LMC, UMS, Fire-fighting ship 1 (2400m3) with water spray

The whole approach to the project was different.

Instead of asking what size of vessel would be most suitable for the project, the project started with the question: "Can you design an icebreaking tug that can break 60 cm ice at 1.5 m draught?"

- Requirements continued with:
 - ... and to be able to tow a barge
 - ... at 50 cm under keel clearance
 - ... and have the endurance for a roundtrip during the most difficult ice season
 - ... Fi-Fi capability and Cascade system

Main limitations affecting the project outcome

– water downtrend affecting the service time ("is there enough time to justify the investment?")

Challenges

- Meet expectations from internal clients accustomed to use icebreaking vessels as "Swiss army knife" tool whilst the main driver of the project is to get a vessel with the minimum draught to break 60 cm of ice thickness
- Time to deliver

USDIB TUG/BARGE DRAWINGS

THANK YOU!

Contact Marine-OSR-IceMeteocean-Contracts@ncoc.kz